Deformation of a micro-torque swimmer

نویسندگان

  • Takuji Ishikawa
  • Tomoyuki Tanaka
  • Yohsuke Imai
  • Toshihiro Omori
  • Daiki Matsunaga
چکیده

The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the aspect ratio of the cell's reference shape, and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like a heart shape, when the capillary number was sufficiently large. Under the influence of gravity, the membrane tension at the anterior end decreased in the upward swimming while it increased in the downward swimming. Moreover, gravity-induced deformation caused the cells to move gravitationally downwards or upwards, which resulted in a positive or negative geotaxis-like behaviour with a physical origin. These results are important in understanding the physiology of a ciliate's biological responses to mechanical stimuli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amoeboid swimming in a channel.

Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellar or ciliary activity to swim in a fluid, while many other micro-organisms instead use ample shape deformation, described as amoeboid, to propel themselves either by crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using membrane deforma...

متن کامل

Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim

We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interact...

متن کامل

Optimal Design of the Three-link Purcell Swimmer

In this paper we address the question of the optimal design for the Purcell 3-link swimmer. More precisely we investigate the best link length ratio which maximizes its displacement. The dynamics of the swimmer is expressed as an ODE, using the Resistive Force Theory. Among a set of optimal strategies of deformation (strokes), we provide an asymptotic estimate of the displacement for small defo...

متن کامل

Bio-Inspired Micro Robots Swimming in Channels

Swimming micro robots that mimic micro organisms have a huge potential in biomedical applications such as opening clogged hard-to-reach arteries, targeted drug delivery and diagnostic operations. Typically, a micro swimmer that consists of a magnetic bead as its body, which is attached to a rigid helical tail, is actuated by a rotating external magnetic field and moved forward in the direction ...

متن کامل

A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation

We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube’s elastic membrane walls producing a traveling wave in the form of a “step-function” traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 472  شماره 

صفحات  -

تاریخ انتشار 2016